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Abstract -This session is intended for engineers, engineering managers and technicians who are 
responsible for the design, manufacture and support of airborne or ground based radar systems, 
subsystems and components.  Simulating radar emitters has been proven to be a process that is either 
expensive or time consuming or both.  Unique signals must be generated to exercise the system under 
a multitude of real world conditions.  Using off-the-shelf vector signal generators, it is now possible to 
create the complex waveforms needed to successfully complete this important element of radar 
system design verification.  This session will illustrate how this can be accomplished.   
 

I. Pulse Test Pattern Generation 
With the advent of microwave signal generators and spectrum analyzers with vector capability, the 
engineer can now generate pulsed microwave signals with precise control over output power, amplitude 
envelope, and modulation within the pulse.   These precision signals can be used as a standard to evaluate 
the performance of subsystems and to troubleshoot system problems.  The devices to be tested are typically 
radar warning receivers and elint receivers.  The purpose of this paper is to help the design engineer 
generate and evaluate complex radar signals using standard microwave test equipment.   
 
The approach taken is to show how to implement a pulse test pattern generator.  The pulse test pattern 
generator produces a series of pulses that will stress one specific parameter in the receiver, such as the 
ability to correctly identify two closely spaced pulses.  The pulse test pattern generator has the flexibility to 
simulate a static emitter, but lacks the memory depth or real time processing to simulate movement of the 
emitter over time.  Experience has shown that a series of complex pulse patterns will enable the user to 
perform roughly 80% of the tests necessary to evaluate the performance of a system.  The final 20% of the 
receiver testing is typically done on a test range using real emitters. 
 

II. Agilent’s E8267C PSG Vector Signal Generator  
The general-purpose test equipment needed to evaluate a receiver is a microwave signal generator capable 
of producing the signals required for the test and a microwave spectrum analyzer capable of verifying the 
signal’s characteristics.   The equipment should cover a frequency range of 0.5-18GHz.  If the receiving 
system must process phase or frequency coded pulses, then the generator must be able to produce these 
signals.   
 
The Agilent E8267C Vector Performance Signal Generator (VPSG) that covers 250KHz to 20GHz meets 
the needs for a general-purpose signal source to test radar warning receivers and elint systems.  The 
generator is a member of the ESG/PSG line and provides excellent output power, low phase noise option, 
analog modulation, and digital communication modulation common to that line.  The generator also 
provides new wide-bandwidth I/Q modulation with an internal arbitrary waveform generator providing 
80MHz of modulation bandwidth.  The generator offers an optional 1GHz analog IQ modulator with 
external inputs.   When used with an external baseband source, the generator could produce the signal 
typical of synthetic aperture radars or imaging radars.  This paper will focus on the use of the internal 
arbitrary waveform generator to produce complex radar signals.  
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Figure #1 
 

 

III.  Agilent’s ‘Download Assistant’ and MatLab 6.5  
Creating custom radar signals requires a software-programming tool capable of dealing with complex array 
math and displaying the information in a usable format.  While there are several tools available, MatLab 
is widely used and commonly available.  Agilent has chosen to support MatLab as a waveform builder for 
the VPSG.  The problem to be dealt with is how to move the digital waveforms from MatLab into the 
arbitrary waveform generator inside the VPSG.   
 
Agilent has developed ‘Download Assistant’ for MatLab to enable users to easily download their IQ 
waveforms into the arbitrary waveform generator’s memory.  In addition to downloading waveforms, it 
allows the user to send any SCPI command to the signal generator to control the instrument state.  
‘Download Assistant’ adds keywords to MatLab to format and download arrays of data through common 
GPIB interface cards or a LAN interface into the signal generator.   The examples used in this paper 
demonstrate the use of ‘Download Assistant’ with MatLab 6.5 to create, download, and generate radar 
signals.  ‘Download Assistant’ and the programming examples used in this paper can be obtained for free at 
the Agilent web site: www.agilent.com/find/psg.    
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Figure #2 
 

 

IV.  Agilent’s E4440A Performance Spectrum Analyzer 
To capture and demodulate signals the E4440A Performance Spectrum Analyzer was used with the 89601 
Vector Analysis Software.  This configuration provided frequency coverage of 26.5GHz with up to 36MHz 
of analysis bandwidth.  Using the internal digitizer provides 8MHz of analysis bandwidth and using an 
external 89611AVXI digitizer provides 36MHz of analysis bandwidth.    
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Figure #3 
 

Generate a Simple Pulse 
To adequately test elint receiver performance, a wide variety of test signals are needed.   The user may wish 
to simulate various types of radar emitters or to simulate the multiple modes of operation for a single type 
of radar.   This requires the test engineer to control the basic pulse parameters: center frequency, power, 
Pulse Width (PW), and Pulse Repetition Interval (PRI).  Doing a reasonable simulation of a simple emitter 
also requires control of the rise time and fall time of the pulse.   Shaping the rising and falling edge of the 
pulse enables the user to control the frequency spectrum of the waveform. 
 
To generate the signal, we will build an array in MatLab that describes the In-Phase and Quadrature time 
domain waveforms and download the arrays into the signal generator.   Figure #4 shows a plot of a typical 
pulsed waveform and Figure #5 reveals the code used to generate the waveform. 
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Figure #4 
 

 

 

sampclk = 100e6;            % ARB Sample Clock for playback 
 
n=10;                       % number of pts in the rise & fall time
ramp=-1:2/n:1-2/n;          % ramp from -1 to almost +1 over n pts 
rise=(1+sin(ramp*pi/2))/2;  % raised cos rise-time shape 
on=ones(1,10);              % on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2; % raised cos fall-time shape 
off=zeros(1,70);            % defines the off-time characteristics 
 
% build the pulse envelop  
i=[rise on fall off];  
 
% plot the i-samples and scale the plot 
plot(i) 
axis ([0 length(i) -2 2]) 
 
% set the q-samples to all zeroes 
q=zeros(1,length(i)); 
 
IQData=[i + (j * q)]; 
 
 

Figure #5 
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In the program, to build the waveform the pulse is broken down into four parts: rise, on, fall, and 
off.  The on and off sections of the pulse is built using the ones(1,10) and zeros(1,70) functions.  
In this case the ones command creates a 1X 10 array and fills it with 1’s.  Likewise, the zeros command 
creates a 1X70 element array and fills it with 0’s.  This method provides a simple way to establish the  
on-time and off-time of the pulse. 
 
The rising and falling edges of the pulse are shaped using a raised cosine function.   To build the two cosine 
waveforms, the program starts by building a linear ramp from –1 to almost +1 using the function  
ramp=-1:2/n:1-2/n..  For the ramp function, if the linear ramp were to continue, the point following 
the last point in the array would be exactly 1.   Ramp functions are often multiplied by some multiple of π 
(represented in MatLab by the variable pi) as part of a function to build sine waves.  Given that -π and π 
represent the exact same point on the unit circle, when the ramp is multiplied by π and the sine or cosine 
taken of the array, a perfect sinusoidal waveform is produced.  This idea will be used in several of the 
example programs. 
 
In the case of the rising edge of the pulse, multiply the ramp with +/- π/2 then take the sin of the result.  
This will produce the center of the sine wave with a first point of –1 and a final point of almost +1.   
Adding 1 to the result and dividing by 2 produces the desired waveform.   The final equation takes the 
form:  rise=(1+sin(ramp*pi/2))/2 .  The falling edge is simply the negative of the rising edge.  
The amplitude envelop of the final pulse is built by concatenating the four arrays using the equation 
i=[rise on fall off]. Figure #1 shows a plot of the final pulse. 
 
Because the phase of the pulse will be constant in this example, the imaginary portion of the array is set to 
zero using the formula q=zeros(1,length(i)). A single complex array is built from the two arrays 
using the formula:  IQData=[i + (j * q)].  Note that multiplying by j in this equation is the 
equivalent of multiplying by the square root of –1.  This infers that q is the imaginary portion of the 
waveform.   The waveform is now ready to be downloaded into the signal generator.  
 
The variable smplclk=100e6 is used to set the clock frequency for the arbitrary waveform generator to 
100MHz.  This allows time to be associated with each point in the waveform.  Each point within the 
waveform will occupy 1/smplclk or 10nsec of time.  The important timing characteristics of the pulse can 
be calculated using this information.  The 0% to 100% rise-time and fall-time of the pulse is 10nsec*n or 
100nsec where n describes the number of points in the arrays rise or fall.  While the 0-100% is 
useful during the construction of the waveform, it cannot be measured accurately on the microwave pulse.  
The 10% to 90% rise-time is a common pulse parameter and can easily be measured using standard test 
equipment.  Given that the rising and falling edges of the pulse are built from raised cosine functions, it can 
be shown that the 10-90% rise-time is equal to .59 times the 0-100% rise-time.  In this case, the 10-90% 
rise-time would equal 59nsec.  Thus the rise-time of the pulse can be set and very accurately calculated by 
setting the value of n and smplclk.   In general, to insure the final output signal’s rise-time is controlled 
by the calculated waveform and not the rise-time of the anti-alias filters following the arbitrary waveform 
generator in the signal generator, when the sample clock is set to it’s maximum value of 100MHz use four 
points or more in the rise-time waveform. 
 
The pulse width and pulse repetition interval can easily be calculated.   Typically the pulse width is 
calculated based on the points 0.5 down from the amplitude of the pulse in a linear display or 6dB down 
from the amplitude of the pulse in a log display.  Because the raised cosine function is symmetric around 
this point, the number of points in the 6dB pulse width can be exactly calculated as the on-time plus half of 
the rise-time plus half of the fall time.  The equation to calculate the pulse width in seconds would be: 
 
                      pulse_width=(length(rise)/2)+length(on)+ (length(fall)/2))/smplclk.   
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The number of points in the pulse repetition interval is the rise-time plus the on-time plus the fall-time plus 
the off-time.   The equation to calculate the pulse width in seconds would be: 
 
                pulse_repetiton_interval=(length(rise)+length(on)+ length(fall) +length(off))/smplclk.   
 
This is an exact calculation and can be used as a standard when evaluating the performance of the signal 
processing within a receiver. 
 

Controlling Output Power 
To test a receiver’s performance, it is critical to have known pulse power at the receiver input.  Controlling 
the output power of the VPSG from MatLab is straightforward.  When: 
 

122 =+ qi     
 
the output power of the signal generator will equal the front panel power level.   For purposes of this paper, 
refer to the power level set at the front panel as the reference power level.  For our example waveform that 
sets the pulse amplitude in the real array to 1 and in the imaginary array to 0, if we set the output power of 
the signal generator to 0dBm, then the peak power of the pulse will equal 0dBm.  The command from 
MatLab (which uses ‘Download Assistant’) to set the output power is: 
 
[status, status_description]=agt_sendcommand(io,'POWer 0'); 
 
Reducing the amplitude of the waveform below 1 will reduce the output power.  However there are several 
scaling factors that must be addressed. 
 
The first issue to deal with is Automatic Loop Control (ALC) in the output of the signal generator.  This 
feedback loop is used during the normal operation of a CW source to hold the output power at a known 
level.  For pulsed signals generated by the IQ modulator, the ALC will tend to drive the average power of 
the signal to equal the reference power driving the peak power well above the reference power.  This 
becomes a real problem when the signal becomes more complex.  It is good practice to turn off the ALC by 
putting the calibration process into manual mode.  This can be done from the front panel of the instrument 
or from MatLab.  The command in MatLab (which uses ‘Download Assistant’) to turn off ALC is: 
 
[status, status_description]=agt_sendcommand(io,'POWer:ALC:STATe OFF'); 
 
Note that the ALC is part of the signal generator calibration process.  Even when the ALC is turned off, the 
value for the output gain correction is held (but not updated) in a digital-to-analog converter and applied to 
the output.  If the ALC is turned off for an extended period of time, the output calibration may drift.  About 
once per day in laboratory conditions, it is good practice to turn off the IQ modulation and press the manual 
calibration softkey under the Power hardkey to update the calibration. 
 
The second issue to deal with is ‘Real Time IQ Scaling’ which is expressed as a linear percentage of the 
reference level.  This scaling factor is applied to all IQ waveforms.  The purpose is to easily enable to user 
to specify a known back off for the arbitrary waveform generator drive level into the IQ modulator.  Since 
the worst-case compression occurs at maximum input power for the IQ modulator, specifying a value 
below 100% may reduce the non-linear distortion produced by the IQ modulator.   A value of 70% will 
reduce the output power by 3dB.   The command in MatLab (which uses ‘Download Assistant’) to set the 
real time scaling value is: 
 
[status,status_description]=agt_sendcommand(io,'RADio:ARB:RSCaling100') 
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The final issue to deal with is User Calibration.  This is a feature that allows the user to compensate for 
frequency dependent loss between the signal generator and the device under test.  The automatic calibration 
process within the signal generator uses a GPIB power meter to measure the power at the device under test 
input to generate the User Calibration array.  When the signal generator is set to a new frequency, the 
processor within the VPSG will correct for the losses and provide the displayed power at the device under 
test input.  For detailed information about using this feature, refer to the VPSG’s User Manual. 
 

Running Pulse.m 
The file Pulse.m is a complete MatLab program to generate and download a simple pulse into the VPSG.  
A printout of the program can be found in Appendix A of this paper.  The source code for all of the 
programming examples used in this paper can be downloaded for free at the Agilent web site: 
www.agilent.com/find/psg.   Note that the pulse parameters were modified from the above example to 
produce a more realistic signal.   The pulse is 1µsec wide with a pulse repetition interval of 10µsec.  The 
reference level for the signal generator is set to 0dBm, but the peak pulse amplitude of the waveform is set 
to 0.707 producing an output power of –3dBm.    Figure #6 provides a screen capture from the Vector 
Signal Analyzer to analyze the signal. 
 
The user should be able to justify the displayed results on the analyzer with the MatLab program Pulse.m.  
The upper left hand plot shows the frequency spectrum of the signal.  The upper right hand plot shows the 
linear amplitude time domain waveform.  The lower left hand plot shows the IQ vector for the signal.  The 
lower right hand plot displays the phase of the signal versus time.  Observe linear amplitude plot and note 
that the amplitude of the signal is constant within a single pulse and between pulses.  From the phase plot 
versus time; note that the phase of the pulse is constant within a single pulse and between pulses.  This 
infers that the Vector PSG is coherent in frequency and phase with the Vector Signal Analyzer.   
 

 
 

Figure #6 
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Generate a Pulse Doublet (Doublet.m) 
Having done the hard work of building a pulsed waveform and describing how each part of the program 
operates to create the signal, new waveforms may easily be built to stress some aspect of the system under 
test.  The next signal is a pulse doublet, which are two pulses placed very close in time.   When testing an 
elint system, a doublet is used to verify the ability of the system to correctly identify two closely spaced 
pulses rather than a single long pulse.  Often a series of doublets will be created with a different amount of 
separation between each doublet.  Also an amplitude change will be introduced between the pulses to place 
additional stress on the system.  Refer to Figure #8 for plots of a pulse doublet. 
 
Generating a pulse doublet using Pulse.m as a starting point is fairly straightforward.  Refer to Figure #7.  
Define three new variables: pulse1, pulse2, and separation.  The variables pulse1 and pulse2 
will contain the amplitude envelope of each pulse.  The amplitude of each pulse can be scaled 
independently of the other.   The variable separation will define the number of points (and the time) 
between the two pulses.  Finally we concatenate the new pulses with separation between them.   
 
 
 
 
 
 
 
 
 
 

separation=zeros(1,128);     % separation between the pulses 
 
% define arrays which contain the pulse envelope for each pulse 
pulse1 = [rise on fall];  
pulse2 = .5*[rise on fall]; 
 
% concatenate and scale the pulses 
i = .707*[pulse1 separation pulse2 off]; 

Figure #7 
 

 
 

Figure #8 
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Generate Phase Shift between pulses  (PM_Doublet.m) 
The next example will add a π/2 phase shift (90°) between the two pulses.  Note that in the previous 
examples, the amplitude envelope was placed in the real array and zeros was placed in the imaginary array.  
For signals that require no phase or frequency modulation, that technique works fine and simplifies the 
math.  For this example, the signals will be specified in terms of an am and pm array and converted into IQ.   
 
The array for pm contains a constant but different phase during the on-time of each pulse.  Pulse1 is set 
to 0° and pulse2 is set to π/2.  Multiplying the am waveform times the sine or cosine of the pm waveform 
performs the IQ conversion.  The period following the variable am instructs MatLab to multiply the arrays 
on an element by element basis. 
 
Note in Figure #10 the π/2 phase shift between pulse1 and pulse2 shown in both the IQ plot and the phase 
versus time plot. 
 
 
 
 
 
 
 
 
 

 
 

 

 

% set the phase of the two pulses  
pm = [0*ones(1,length(pulse1)) separation    
(pi/2)*ones(1,length(pulse1)) off]; 
 
% convert am and pm to i and q 
i=.707*am.* cos(pm); 
q=.707*am.* sin(pm); 
Figure #9 

 

Figure #10 
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Create Doppler Shift (Doppler.m) 
Creating a pulsed waveform with a constant doppler frequency shift requires the introduction of a new 
technique.  The idea is to build a waveform that contains the doppler offset frequency from the carrier 
versus time, then integrate the waveform to produce phase versus time.  Remember that phase is simply the 
integral of frequency.  In Figure #11 an array fm is produced that contains a constant offset frequency in 
Hz.  The length of the array is equal to the entire am pulsed waveform.  The fm waveform is integrated 
using the function cumsum, which is the cumulative sum of the elements of the array.  The new array must 
be scaled by 2*pi/sampclk to obtain units of radians.  The am and pm waveforms are converted into 
IQ and scaled for downloading into the signal generator. 
 
Note that math shown in Figure #11 allows the user to specify the doppler offset frequency in Hertz versus 
time and, given the sample clock in Hertz, calculate the pm waveform.  This is very powerful.  While this 
example produces a static doppler offset within a single pulse, the technique can easily be extended to 
produce a doppler trajectory for a moving emitter.  The primary limitation of the technique is the 32Mbytes 
of memory within the signal generator to play the waveforms.  With 100MHz sample clock, the 32Mbytes 
of memory will allow the production of 32msec of unique signal.          
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

doppler_freq = 100e3;      % defines the doppler offset freq in Hz
 
% define an array which contains the doppler freq in each sample 
fm=doppler_freq*ones(1,length(am)); 
 
% use an integral to translate from fm to pm 
pm=(2*pi/sampclk)*cumsum(fm); 
 
% convert am and pm to i and q and scale amplitude 
i=.707*am.* cos(pm); 
q=.707*am.* sin(pm); 

Figure #11 
 
 

Now to discuss the two vector displays of the doppler signal.  Figure #12 shows the vector signal analyzer 
tuned to the exact center frequency of the signal generator.  The phase versus time plot in the lower right 
hand corner shows a ramp in phase versus time during the on-time of the pulse. The IQ display in the lower 
left hand corner shows an arc of phase.  From the parameters in the MatLab program doppler.m, the pulse 
width can be calculated to be 1µsec and the doppler shift set to 100KHz.  The phase shift generated by a 
100KHz doppler shift over 1µsec should be: 
 
                                               (100KHz)*(360º/cycle)*(1e-6sec) = 36º 
 
Note that the displays show 36º of phase shift during the on-time of the pulse. 
 
In Figure #13 the vector signal analyzer has been tuned to the doppler offset frequency.  Note that the phase 
of the pulse is constant and stable over at least two pulses.  This infers the signal generator and arbitrary 
waveform generator are coherent with the vector signal analyzer.  This also provides confirmation that the 
math used to calculate the doppler waveform is correct.  
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Figure #12 

 

 
Figure #13 
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IV. Building Pulse Compression Signals 
Having provided examples of simple pulsed waveforms with control of the amplitude and phase of the 
pulse, the next step will be to produce modulation within the pulse.  Both phase and frequency modulation 
are used by radar systems to improve range and resolution.   Radar systems that use modulation within the 
pulse are referred to as pulse compression radar systems. 
 
The radar range equation points out a basic engineering trade-off between range and resolution and the 
need for pulse compression.  To build a long range radar (or for the radar to ‘see’ a great distance) the radar 
needs high average output power.  To obtain good resolution, the radar needs a narrow pulse that reduces 
the average output power.  Pulse compression provides a path around this trade-off.  Pulse compression 
radars will transmit a long pulse with modulation inside the pulse.  The returns are processed through a 
filter that is matched to the characteristics of the modulation compressing the pulse in time.  This 
compression allows the radar to separate overlapping returns while transmitting a high average power.  
 
It is important for elint and radar warning receivers to correctly process these types of signals.  The 
modulation type and deviation of the signals provide important information about the purpose and intent of 
an observed system.   It is often difficult to obtain a signal source with the appropriate characteristics to 
verify the performance of the elint system. 
 

 
 

Figure #14 
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Generate a Barker Coded Pulse (Barker.m) 
Barker coded signals are typical in pulse compression radar systems.  Barker codes are binary numbers 
containing between 2 and 13 bits that have a unique auto correlation functions. The points adjacent to the 
peak of the correlation function equal zero.  This is very useful in a radar system since any spurious 
response can be misinterpreted as a target.   A Barker coded pulse typically uses binary phase modulation.  
The ‘chip’ rate is the dwell time for each bit within the pulse.  In this example, we will build a 7-bit Barker 
coded waveform.  The 7-bit Barker code contains the bits [+1 +1 +1 -1 -1 +1 -1]. 
 
To build the phase waveform, the seven bits of information must correctly encode into a binary phase shift 
keyed waveform and deal with the speed of the phase transitions.  The transition time between phase states 
will at least in part determine the occupied bandwidth of the signal.   Within the program, first define the 
possible phase states and transitions as individual arrays, and then concatenate them into the final 
waveform.  The two possible states the waveform can occupy are positive and negative, or +1 and –1.   
There are four possible transitions: negative to positive, positive to negative, negative to negative, and 
positive to positive.  The states are built with a constant value over the ‘chip’ period.  The transitions are 
built using raised cosine functions.  Note that the array rise was built as part of the am array, but it is 
used here as a 0 to 1 phase transition.  At the end of the code sequence, the function rise-1 is used to 
provide a –1 to 0 transition.  Having constructed the array with +1 and –1 states, multiply the waveform by 
pi/2 to provide the appropriate phase deviation.  The resulting waveform is converted to IQ and 
downloaded into the signal generator. 
 
 

  

neg_pos=(1+sin(ramp*pi/2))-1;       
pos_neg=(1+sin(-ramp*pi/2))-1; 
pos_pos=ones(1,4); 
neg_neg=-ones(1,4); 
pos=ones(1,13); 
neg=-ones(1,13); 
 
pm=(pi/2)*[0 0 0 ... 
        [rise pos]...           %Bit 1  high 
        [pos_pos pos]...        %Bit 2  high 
        [pos_pos pos]...        %Bit 3  high 
        [pos_neg neg]...        %Bit 4  low 
        [neg_neg neg]...        %Bit 5  low 
        [neg_pos pos]...        %Bit 6  high 
        [pos_neg neg]...        %Bit 7  low 
        rise-1 0 0 off]; 
 
i=.707*am.* cos(pm); 
q=.707*am.* sin(pm); 

Figure #15 
 

Figure #16 shows the demodulated signal.  The lower right hand plot displays the demodulated phase 
versus time.  Note that during the on-time of the pulse, the seven bits of the code are clearly visible.  
Markers may be used to verify the phase state accuracy and timing.  The noise in phase between the pulses 
is due to the fact that during the off-time of the pulse the phase of the signal is undefined.     
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Figure #16 
 
 

Generate a Linear FM Chirp (LFM_Chirp.m) 
The final type of signal to demonstrate is a linear FM chirp.   The objective is to build an fm waveform that 
will linearly sweep the frequency across a known deviation.  This example uses the technique introduced in 
the doppler example that integrates the fm waveform to produce a pm waveform which can be converted 
over to IQ.  The advantage of this process is it allows the user to build waveforms in frequency versus time 
to create arbitrary fm waveforms that can be converted and downloaded into the signal generator.    
 
In Figure #17 the fm chirp is built using a ramp that starts at exactly –1 and ends at exactly +1.  This allows 
the user to easily scale the waveform by multiplying by the desired frequency deviation divided by 2.  Note 
that the frequency will sweep both above and below the carrier frequency.  Using the internal arbitrary 
waveform synthesizer, the signal generator can produce up to an 80MHz chirp.  To eliminate an 
unnecessary frequency step at the beginning and end of the chirp, the fm waveform is held at the frequency 
of the chirp endpoints during the rise-time and fall-time of the pulse. 
 
In Figure #18 note the demodulated fm waveform in the lower right hand plot.  The chirp is linear and the 
deviation is equal to the 10MHz defined in the program (+/- 5MHz).  The values in the fm demodulator are 
only defined during the on-time of the pulse.  In the upper right hand plot, note that the amplitude of the 
pulse is flat during the pulse on-time.  Because the signal is being swept across a 10MHz frequency span, 
this indicates the IQ modulator within the signal generator provides a flat frequency response across that 
bandwidth.  The spiral effect in the IQ plot in the lower left hand corner is due to the frequency offset from 
the carrier during the rise and fall time of the pulse. 
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chirp_dev = 10e6;         % defines the total chirp deviation in Hz
 
% define an array which contains the chirp waveform 
fm=(chirp_dev/2)*([-ones(1,n) (-1:2/(length(on)-1):1) ones(1,n) 
ones(1,length(off))]);     
 
% use an integral to translate from fm to pm 
pm=(2*pi/sampclk)*cumsum(fm); 
 
% convert am and pm to i and q and scale amplitude 
i = .707*am.* cos(pm); 
q = .707*am.* sin(pm); 

 
Figure #17 

 

 
 

Figure #18 
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Generate a Non-Linear FM Chirp (NLFM_Chirp.m) 
The final example will demonstrate how to add a known amount of non-linear distortion to the fm chirp 
waveform.  The non-linear distortion will be produced by the single cycle of a sine wave scaled to fit 
within the on-time of the pulse.  The amount of non-linearity is set by scaling the amplitude of the sine 
wave as some percentage of the total deviation.  Because the value of the sine wave is zero at its end points 
the maximum deviation of the chirp will not change.  The resulting S-shape of the waveform is typical of 
the distortion seen in non-synthesized chirped signals.   
   

 

 

 

chirp_dev = 10e6;      % defines the total chirp deviation in Hz 
  
% create some non-linear distortion to add to the chirp 
nonlinear=.2*sin((pi)*(-1:2/(length(on)-1):1)); 
 
% add the nonlinearity to the chirp and concatenate the sections 
fm=(chirp_dev/2)*([-ones(1,n) nonlinear+(-1:2/(length(on)-1):1) 
ones(1,n) ones(1,length(off))]); 
 
% use an integral to translate from fm to pm 
pm=(2*pi/sampclk)*cumsum(fm); 
 
% convert am and pm to i and q and scale amplitude 
i =.707*am.* cos(pm); 
Figure #19 

 
 

Figure #20 
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Agilent ‘Pulse Builder’ Signal Studio Software 
For many common applications Agilent’s ‘Pulse Builder’ Signal Studio Software eliminates the need to 
write custom software programs.  Pulse Builder provides a Graphical User Interface that makes it easy to 
create complex pulsed signals without detailed knowledge of the math involved in the creation of the 
signals.  Pulse Builder provides simple CW pulses with shaping and complex phase and frequency-encoded 
signals.   The user can easily build pulses and pulse patterns to simulate complex emitters.  Once created, 
the signals can be saved on the signal generator’s internal hard disk drive and recalled later without an 
external pc or software.  
 

 
 

Figure #21 

Multiple Emitter Simulation Solutions  
There are many applications where several emitters are required to test the receiver and signal processing 
algorithms.   Elint systems must be able to process multiple emitters simultaneously and provide correct 
responses.  Typical tests include sensitivity tests and dynamic range tests.  Sensitivity tests are performed 
by very accurately being able to control the low level power of an emitter.  Dynamic range tests where a 
large amplitude emitter is close in frequency to a low level emitter.  Many of the systems are required to be 
able to process overlapping pulses where the emitters are separated over a wide bandwidth.   The emitter 
definition must be flexible and may change over time period of the simulation.  This is often a very difficult 
test to instrument and perform. 
 
Synergent Technologies ™ is working closely with Agilent to develop a multi-emitter pulse pattern 
generator based on the Vector PSG.  The simulator will provide frequency coverage from 0.5 to 18GHz 
with 2-4-6-8 simultaneous emitters.   The emitters will be completely independent and will produce 
complex pulse patterns containing wide bandwidth phase coded signals.  The entire simulation process can 
be controlled from a flexible timeline editor.   The timeline editor will enable the user to very accurately 
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control when an emitter becomes active or inactive and control the timing between multiple emitters.  The 
characteristics of the system can be tailored to meet the needs of individual customers. 

 
 

Figure #22 

Summary 
Printed copies of the programs used in this paper are provided in the appendices. The source code for the 
examples used in this paper along with ‘Download Assistant’ for MatLab 6.5 can be downloaded from the 
Agilent web site: www.agilent.com/find/psg.    
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APPENDEX A: Simple Pulse 
 
% Script file:  Pulse.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file to generate a 
%   simple pulsed signal with the PSG vector signal generator.  
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Version for 2002 AD Symposium in MatLab/VEE  
%   8/14/2002   John Hutmacher  Added comments and Download Assistant  
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, and IQ Scaling  
% 
%   Define variables: 
% 
%   n              -- counting variable (no units) 
%   ramp           -- ramp from -1 to almost +1; used to build sine waves 
%   rise           -- raised cosine pulse rise-time definition (samples) 
%   on             -- pulse on-time definition (samples) 
%   fall           -- raised cosine pulse fall-time definition (samples) 
%   off            -- pulse off-time definition (samples) 
%   i              -- in-phase modulation signal (samples) 
%   q              -- quadrature modulation signal (samples) 
%   IQData         -- complex array containing both i and q waveform samples 
%   Markers        -- array containing markers for Event Markers 1 and 2 
%   sampclk        -- clock freq for the D/A converters in the IQ modulator 
 
 
sampclk = 100e6;               % ARB Sample Clock for playback 
 
n=4;                           % number of pts in the rise & fall time 
ramp=-1:2/n:1-2/n;             % ramp from -1 to almost +1 over n points 
rise=(1+sin(ramp*pi/2))/2;     % defines the raised cos rise-time shape 
on=ones(1,92);                 % defines the on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;    % defines the raised cos fall-time shape 
off=zeros(1,900);              % defines the off-time characteristics  
 
% build the pulse envelop and scale it 3.01dB below the output amplitude 
i = .707*[rise on fall off];  
 
% plot the i-samples and scale the plot 
% plot(i) 
% axis ([0 length(i) -2 2]) 
 
% set the q-samples to all zeroes 
q = zeros(1,length(i)); 
 
% define a composite iq matrix for download to the PSG using the  
% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a matrix and activate a marker for the beginning of the waveform 



Markers = zeros(2,length(IQData));  %fill Marker array with zeros 
Markers(1,1) = 1;                   %set Marker to first point of playback 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
%verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Download Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'pulse', sampclk, 
'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' ); 
 



APPENDEX B: Pulse Doublet 
 
% Script file: Doublet.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file to generate a 
%   doublet (two simple pulses) within a single PRI with the PSG  
%   vector signal generator. 
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Initial version for 2002 AD Symposium  
%   8/14/2002   John Hutmacher  Added comments and Download Assistant  
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, and IQ Scaling  
% 
%   Define variables: 
% 
%   n            -- counting variable (no units) 
%   ramp         -- ramp from -1 to almost +1; used to build sine waves 
%   rise         -- raised cosine pulse rise-time definition (samples) 
%   on           -- pulse on-time definition (samples) 
%   fall         -- raised cosine pulse fall-time definition (samples) 
%   off          -- pulse off-time definition (samples) 
%   i            -- in-phase modulation signal (samples) 
%   q            -- quadrature modulation signal (samples) 
%   IQData       -- complex array containing both i and q waveform samples 
%   Markers      -- array containing markers for Event Markers 1 and 2 
%   separation   -- array containing the time separation between the pulses 
 
n=4;                           % defines the number of points in the rise-
time & fall-time 
ramp=-1:2/n:1-2/n;             % ramp from -1 to almost +1 over n points 
rise=(1+sin(ramp*pi/2))/2;     % defines the raised cos rise-time shape 
on=ones(1,120);                % defines the on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;    % defines the raised cos fall-time shape 
off=zeros(1,640);              % defines the off-time sample points 
separation=zeros(1,128);       % defines the separation between the pulses 
 
% define arrays which contain the pulse envelope for each pulse 
pulse1 = [rise on fall];  
pulse2 = .5*[rise on fall]; 
 
% concatenate and scale the pulses 
i = .707*[pulse1 separation pulse2 off]; 
 
% plot the i-samples and scale the plot  
%plot(i) 
%axis ([0 length(i) -2 2]) 
 
% set the q-samples to all zeroes 
q = zeros(1,length(i)); 
 
% define a composite iq matrix for download to the PSG using the  



% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a marker matrix and activate a marker to indicate the beginning of 
the waveform 
Markers = zeros(2,length(IQData));  %fill Marker array with zero ie. no 
markers set 
Markers(1,1) = 1;                   %set Marker to first point of play back 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
% verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Downlaod Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 
1000000000'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% defines the ARB Sample Clock for playback 
sampclk = 100000000;  
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'pulse', sampclk, 
'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' ); 
 



APPENDIX C: Pulse Doublet with Phase Offset 
 
% Script file:  Phase_Offset_Doublet.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file to generate a 
%   doublet (two simple pulses) within a single PRI and that has pi/2  
%   (or 90 deg) phase offset between the pulses. 
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Initial version for 2002 AD Symposium  
%   8/14/2002   John Hutmacher  Added comments and Download Assistant  
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, and IQ Scaling  
% 
%   Define variables: 
% 
%   n          -- counting variable (no units) 
%   ramp       -- ramp from -1 to almost +1; used to build sine waves 
%   rise       -- raised cosine pulse rise-time definition (samples) 
%   on         -- pulse on-time definition (samples) 
%   fall       -- raised cosine pulse fall-time definition (samples) 
%   off        -- pulse off-time definition (samples) 
%   i          -- in-phase modulation signal (samples) 
%   q          -- quadrature modulation signal (samples) 
%   IQData     -- complex array containing both i and q waveform samples 
%   Markers    -- array containing markers for Event Markers 1 and 2 
%   separation -- array containing the time separation between the pulses 
%   am         -- amplitude envelope for the pulse, linear units 
%   pm         -- phase of the pulse vs time in rads 
 
sampclk = 100e6;                % defines the ARB Sample Clock for playback 
 
n=4;                           % defines the number of points in the rise-
time & fall-time 
ramp=-1:2/n:1-2/n;             % ramp from -1 to almost +1 over n points 
rise=(1+sin(ramp*pi/2))/2;     % defines the raised cos rise-time shape 
on=ones(1,120);                % defines the on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;    % defines the raised cos fall-time shape 
off=zeros(1,640);              % defines the off-time sample points 
separation=zeros(1,128);       % defines the separation between the pulses 
 
% define arrays which contain the pulse envelope for each pulse 
pulse1 = [rise on fall];  
pulse2 = .5*[rise on fall]; 
 
% concatenate and scale the pulses 
am = [pulse1 separation pulse2 off]; 
 
% plot the i-samples and scale the plot  
% plot(i) 
% axis ([0 length(i) -2 2]) 
 



% set the phase of the first pulse to 0 rad and the second to pi/2 rad  
pm = [0*ones(1,length(pulse1)) seperation (pi/2)*ones(1,length(pulse1)) off]; 
 
% convert am and pm to i and q 
i=.707*am.* cos(pm); 
q=.707*am.* sin(pm); 
 
% define a composite iq matrix for download to the PSG using the  
% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a marker matrix and activate a marker to indicate the beginning of 
the waveform 
Markers = zeros(2,length(IQData));  %fill Marker array with zero ie. no 
markers set 
Markers(1,1) = 1;                   %set Marker to first point of play back 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
% verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Download Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 
1000000000'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'pulse', sampclk, 
'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' ); 
 



APPENDIX D: Pulse with Doppler Frequency Offset 
 
% Script file:  Doppler.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file that simulates a 
%   simple pulse signal with a fixed doppler frequency offset from the  
%   center frequency of the signal generator using IQ modulation.  
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Initial version for 2002 AD Symposium  
%   8/14/2002   John Hutmacher  Added comments and Download Assistant  
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, and IQ Scaling  
% 
%   Define variables: 
% 
%   n              -- counting variable (no units) 
%   ramp           -- ramp from -1 to almost +1; used to build sine waves 
%   rise           -- raised cosine pulse rise-time definition (samples) 
%   on             -- pulse on-time definition (samples) 
%   fall           -- raised cosine pulse fall-time definition (samples) 
%   off            -- pulse off-time definition (samples) 
%   i              -- in-phase modulation signal (samples) 
%   q              -- quadrature modulation signal (samples) 
%   IQData         -- complex array containing both i and q waveform samples 
%   Markers        -- array containing markers for Event Markers 1 and 2 
%   am             -- amplitude envelope for the pulse, linear units 
%   pm             -- phase of the pulse vs time in rads 
%   fm             -- offset frequency from carrier vs time in Hz 
%   sampclk        -- clock freq for the D/A converters in the IQ modulator 
%   doppler_freq   -- doppler offset frequency in Hz 
 
sampclk = 100e6;                % defines the ARB Sample Clock for playback 
doppler_freq = 100e3;           % defines the doppler offset freq in Hz 
 
n=4;                            % defines the number of points in the rise & 
fall time 
ramp=-1:2/n:1-2/n;              % ramp from -1 to almost +1 over n points 
rise=(1+sin(ramp*pi/2))/2;      % defines the raised cos rise-time shape 
on=ones(1,92);                  % defines the on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;     % defines the raised cos fall-time shape 
off=zeros(1,900);               % defines the off-time sample points 
 
% concatenate the parts of the amplitude of the pulse into a single array 
am = [rise on fall off]; 
 
% plot the am-samples and scale the plot  
% plot(am) 
% axis ([0 length(i) -2 2]) 
 
% define an array which contains the the doppler freq in each sample 
fm=doppler_freq*ones(1,length(am)); 



 
% use an intergral to translate from fm to pm 
pm=(2*pi/sampclk)*cumsum(fm); 
 
% convert am and pm to i and q and scale amplitude 
i=.707*am.* cos(pm); 
q=.707*am.* sin(pm); 
  
% define a composite iq matrix for download to the PSG using the  
% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a matrix and activate a marker for the beginning of the waveform 
Markers = zeros(2,length(IQData));  %fill Marker array with zero ie. no 
markers set 
Markers(1,1) = 1;                   %set Marker to first point of play back 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
% verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Downlaod Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 
1000000000'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'doppler', 
sampclk, 'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' ); 
 



APPENDIX E: Pulse with Barker Code 
 
% Script file:  barker.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file that simulates a 
%   simple 7 bit barker RADAR signal to the PSG vector signal generator.  
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Initial version for 2002 AD Symposium  
%   8/14/2002   John Hutmacher  First draft   
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, and IQ Scaling  
%    
% 
%   Define pulse variables: 
% 
%   n       -- counting variable (no units) 
%   ramp    -- ramp from -1 to almost +1; used to build sine waves 
%   rise    -- raised cosine pulse rise-time definition (samples) 
%   on      -- pulse on-time definition (samples) 
%   fall    -- raised cosine pulse fall-time definition (samples) 
%   off     -- pulse off-time definition (samples) 
%   i       -- in-phase modulation signal (samples) 
%   q       -- quadrature modulation signal (samples) 
%   pm      -- phase modulation 
%   sampclk -- clock freq for the D/A converters in the IQ modulator 
%   neg_pos -- transition from low bit to high bit       
%   pos_neg -- transition form high bit to low bit  
%   pos_pos -- defines high bit  
%   neg_neg -- defines low bit  
%   pos     -- defines high bit  
%   neg     -- defines low bit 
 
sampclk = 100e6;                % defines the ARB Sample Clock for playback 
 
n=4;                            % defines the number of points in the rise-
time & fall-time 
ramp=-1:2/n:1-2/n;              % number of points translated to time 
rise=(1+sin(ramp*pi/2))/2;      % defines the pulse rise-time shape 
on=ones(1,120);                 % defines the pulse on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;     % defines the pulse fall-time shape 
off=zeros(1,896);               % defines the pulse off-time characteristics 
am=[rise on fall off];          % defines the pulse envelope 
 
neg_pos=(1+sin(ramp*pi/2))-1;      %  
pos_neg=(1+sin(-ramp*pi/2))-1; 
pos_pos=ones(1,4); 
neg_neg=-ones(1,4); 
pos=ones(1,13); 
neg=-ones(1,13); 
 
pm=(pi/2)*[0 0 0 ... 



        [rise pos]...           %Bit 1  high 
        [pos_pos pos]...        %Bit 2  high 
        [pos_pos pos]...        %Bit 3  high 
        [pos_neg neg]...        %Bit 4  low 
        [neg_neg neg]...        %Bit 5  low 
        [neg_pos pos]...        %Bit 6  high 
        [pos_neg neg]...        %Bit 7  low 
        rise-1 0 0 off]; 
 
i=.707*am.* cos(pm); 
q=.707*am.* sin(pm); 
 
% define a composite iq matrix for download to the PSG using the  
% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a marker matrix and activate a marker to indicate the beginning of 
the waveform 
Markers = zeros(2,length(IQData));  %fill Marker array with zero ie. no 
markers set 
Markers(1,1) = 1;                   %set Marker to first point of play back 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
% verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Download Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 
1000000000'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'barker', 
sampclk, 'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' ); 
 



APPENDIX F: Pulse with Linear FM Chirp 
 
% Script file:  LFM_Chirp.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file that simulates a 
%   pulsed signal with a linear fm chirp to the PSG vector signal generator.  
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Initial version for 2002 AD Symposium  
%   8/14/2002   John Hutmacher  Added comments and Download Assistant  
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, IQ Scaling 
%                               and corrected fm to pm integration calc 
% 
%   Define variables: 
% 
%   n              -- counting variable (no units) 
%   ramp           -- ramp from -1 to almost +1; used to build sine waves 
%   rise           -- raised cosine pulse rise-time definition (samples) 
%   on             -- pulse on-time definition (samples) 
%   fall           -- raised cosine pulse fall-time definition (samples) 
%   off            -- pulse off-time definition (samples) 
%   ontime         -- total number of points in the rise + on + fall 
%   i              -- in-phase modulation signal (samples) 
%   q              -- quadrature modulation signal (samples) 
%   IQData         -- complex array containing both i and q waveform samples 
%   Markers        -- array containing markers for Event Markers 1 and 2 
%   am             -- amplitude envelope for the pulse, linear units 
%   pm             -- phase of the pulse vs time in rads 
%   fm             -- offset frequency from carrier vs time in Hz 
%   sampclk        -- clock freq for the D/A converters in the IQ modulator 
%   chirp_dev      -- total chirp frequency deviation in Hz 
 
sampclk = 100e6;                % defines the ARB Sample Clock for playback 
chirp_dev = 10e6;               % defines the total chirp deviation in Hz 
 
n=4;                            % defines the number of points in the rise-
time & fall-time 
ramp=-1:2/n:1-2/n;              % ramp from -1 to almost +1 over n points 
rise=(1+sin(ramp*pi/2))/2;      % defines the raised cos rise-time shape 
on=ones(1,92);                  % defines the on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;     % defines the raised cos fall-time shape 
off=zeros(1,900);               % defines the off-time sample points 
 
% concatenate the parts of the amplitude of the pulse into a single array 
am = [rise on fall off]; 
 
% define an array which contains the the chirp waveform 
fm=(chirp_dev/2)*([-ones(1,n) (-1:2/(length(on)-1):1) ones(1,n) 
ones(1,length(off))]);   
     
%  plot the fm-samples and scale the plot  



%plot(fm); 
%axis ([0 length(am) -2 2]); 
 
% use an integral to translate from fm to pm 
pm=(2*pi/sampclk)*cumsum(fm); 
 
% convert am and pm to i and q and scale amplitude 
i = .707*am.* cos(pm); 
q = .707*am.* sin(pm); 
  
% define a composite iq matrix for download to the PSG using the  
% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a marker matrix and activate a marker to indicate the beginning of 
the waveform 
Markers = zeros(2,length(IQData));  %fill Marker array with zero ie. no 
markers set 
Markers(1,1) = 1;                   %set Marker to first point of play back 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
% verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Download Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 
1000000000'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'dopler', 
sampclk, 'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' ); 
 
 



APPENDIX G:  Pulse with Non-Linear FM Chirp 
 
% Script file:  LFM_Chirp.m 
% 
% Purpose: 
%   To calculate and download an arbitrary waveform file that simulates a 
%   simple pulse signal to the PSG vector signal generator.  
% 
%   Record of revisions: 
% 
%   Date        Programmer      Description of change 
%   ====        ==========      ===================== 
%   4/15/2002   Randal Burnette Initial version for 2002 AD Symposium  
%   8/14/2002   John Hutmacher  Added comments and Download Assistant  
%   9/4/2002    Randal Burnette Added Preset, turned ALC off, and IQ Scaling  
% 
%   Define variables: 
% 
%   n              -- counting variable (no units) 
%   ramp           -- ramp from -1 to almost +1; used to build sine waves 
%   rise           -- raised cosine pulse rise-time definition (samples) 
%   on             -- pulse on-time definition (samples) 
%   fall           -- raised cosine pulse fall-time definition (samples) 
%   off            -- pulse off-time definition (samples) 
%   ontime         -- total number of points in the rise + on + fall 
%   i              -- in-phase modulation signal (samples) 
%   q              -- quadrature modulation signal (samples) 
%   IQData         -- complex array containing both i and q waveform samples 
%   Markers        -- array containing markers for Event Markers 1 and 2 
%   am             -- amplitude envelope for the pulse, linear units 
%   pm             -- phase of the pulse vs time in rads 
%   fm             -- offset frequency from carrier vs time in Hz 
%   sampclk        -- clock freq for the D/A converters in the IQ modulator 
%   chirp_dev      -- total chirp frequency deviation in Hz 
 
sampclk = 100e6;                % defines the ARB Sample Clock for playback 
chirp_dev = 10e6;               % defines the total chirp deviation in Hz 
 
n=4;                           % defines the number of points in the rise-
time & fall-time 
ramp=-1:2/n:1-2/n;              % ramp from -1 to almost +1 over n points 
rise=(1+sin(ramp*pi/2))/2;      % defines the raised cos rise-time shape 
on=ones(1,92);                  % defines the on-time characteristics 
fall=(1+sin(-ramp*pi/2))/2;     % defines the raised cos fall-time shape 
off=zeros(1,900);               % defines the off-time sample points 
 
% concatenate the parts of the amplitude of the pulse into a single array 
am = [rise on fall off]; 
 
% define an array which contains the the non-linearity of the chirp waveform 
% the non-linearity is in the form of one cycle of a sine wave across the 
% chirp.   
nonlinear=.2*sin((pi)*(-1:2/(length(on)-1):1)); 
 
% add the non-linearity to the chirp and concatenate the other sections 



fm=(chirp_dev/2)*([-ones(1,n) nonlinear+(-1:2/(length(on)-1):1) ones(1,n) 
ones(1,length(off))]);   
     
%plot the am-samples and scale the plot  
%plot(fm); 
%axis ([0 length(am) -2 2]); 
 
% use an integral to translate from fm to pm 
pm=(2*pi/sampclk)*cumsum(fm); 
 
% convert am and pm to i and q and scale amplitude 
i =.707*am.* cos(pm); 
q=.707*am.* sin(pm); 
  
% define a composite iq matrix for download to the PSG using the  
% PSG/ESG Download Assistant 
IQData = [i + (j * q)]; 
 
% define a marker matrix and activate a marker to indicate the beginning of 
the waveform 
Markers = zeros(2,length(IQData));  %fill Marker array with zero ie. no 
markers set 
Markers(1,1) = 1;                   %set Marker to first point of play back 
 
% make a new connection to the PSG over the GPIB interface 
io = agt_newconnection('gpib',0,19); 
 
% verify that communication with the PSG has been established 
[status, status_description,query_result] = agt_query(io,'*idn?'); 
if (status < 0) return; end 
 
% preset the instrument 
[status, status_description,query_result] = agt_query(io,':STATus:PRESet'); 
 
% set carrier frequency and power on the PSG using the PSG Download Assistant 
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 
1000000000'); 
[status, status_description] = agt_sendcommand(io, 'POWer 0'); 
 
% put the ALC into manual control and set the IQ real time scaling  
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF'); 
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 100'); 
 
% download the iq waveform the PSG baseband generator for playback 
[status, status_description] = agt_waveformload(io, IQData, 'dopler', 
sampclk, 'play', 'no_normscale', Markers); 
 
% Turn on RF output power 
[status, status_description ] = agt_sendcommand( io, 'OUTPut:STATe ON' );  
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